
 

 

Journal of Fluids Engineering Editorial Policy 
Statement on the Control of Numerical Accuracy 

 
   Although no standard method for evaluating numerical uncertainty is currently accepted by the 
CFD community, there are numerous methods and techniques available to the user to accomplish 
this task.  The following is a list of guidelines, enumerating the criteria to be considered for ar-
chival publication of computational results in the Journal of Fluids Engineering. 

1. Authors must be precise in describing the numerical method used; this includes an as-
sessment of the formal order of accuracy of the truncation error introduced by individual 
terms in the governing equations, such as diffusive terms, source terms, and most impor-
tantly, the convective terms.  It is not enough to state, for example, that the method is 
based on a “conservative finite-volume formulation,” giving then a reference to a general 
CFD textbook. 

2. The numerical method used must be at least formally second-order accurate in space 
(based on a Taylor series expansion) for nodes in the interior of the computational grid.  
The computational expense of second, third, and higher order methods are more expen-
sive (per grid point) than first order schemes, but the computational efficiency of these 
higher order methods (accuracy per overall cost) is much greater.  And, it has been dem-
onstrated many times that, for first order methods, the effect of numerical diffusion on the 
solution accuracy is devastating. 

3. Methods using a blending or switching strategy between first and second order methods 
(in particular, the well-known “hybrid,” “power-law,” and related exponential schemes) 
will be viewed as first-order methods, unless it can be demonstrated that their inherent 
numerical diffusion does not swamp or replace important modeled physical diffusion 
terms.  A similar policy applies to methods invoking significant amounts of explicitly 
added artificial viscosity or diffusivity. 

4. Solutions over a range of significantly different grid resolutions should be presented to 
demonstrate grid-independent or grid-convergent results.  This criterion specifically ad-
dresses the use of improved grid resolution to systematically evaluate truncation error and 
accuracy.  The use of error estimates based on methods such as Richardson extrapolation 
or those techniques now used in adaptive grid methods, may also be used to demonstrate 
solution accuracy. 

5. Stopping criteria for iterative calculations need to be precisely explained.  Estimates must 
be given for the corresponding convergence error. 

6. In time-dependent solutions, temporal accuracy must be demonstrated so that the spuri-
ous effects of phase error are shown to be limited.  In particular, it should be demon-
strated that unphysical oscillations due to numerical dispersion are significantly smaller 
in amplitude than captured short-wavelength (in time) features of the flow. 

7. Clear statements defining the methods used to implement boundary and initial conditions 
must be presented.  Typically, the overall accuracy of a simulation is strongly affected by 
the implementation and order of the boundary conditions.  When appropriate, particular 
attention should be paid to the treatment of inflow and outflow boundary conditions. 

8. In the presentation of an existing algorithm or code, all pertinent references or other pub-
lications must be cited in the paper, thus aiding the reader in evaluating the code and its 
method without the need to redefine details of the methods in the current paper.  How-
ever, basic features of the code must be outlined according to Item 1, above. 



 

 

9. Comparison to appropriate analytical or well-established numerical benchmark solutions 
may be used to demonstrate accuracy for another class of problems.  However, in general 
this does not demonstrate accuracy for another class of problems, especially if any ad-
justable parameters are involved, as in turbulence modeling. 

10. Comparison with reliable experimental results is appropriate, provided experimental un-
certainty is established.  However, “reasonable agreement” with experimental data alone 
will not be enough to justify a given single-grid calculation, especially if adjustable pa-
rameters are involved. 

 
   These ten items lay down a set of criteria by which the editors and reviewers of this Journal 
will judge the archival quality of publications dealing with computational studies for the Journal 
of Fluids Engineering.  We recognize that the effort to perform a thorough study of numerical 
accuracy may be great and that many practical engineering calculations will continue to be per-
formed by first order methods, on a single fixed grid.  However, such analyses would not be ap-
propriate for presentation in this archival journal.  With the gains in performance of low-end 
workstations, it is now reasonable to require papers on solutions by CFD to meet these funda-
mental criteria for archiving of a publication. 
   With the details of these ten criteria now presented, a shortened statement will appear as fol-
lows: 
   The Journal of Fluids Engineering will not consider any paper reporting the numerical solu-
tion of a fluids engineering problem that fails to address the task of systematic truncation error 
testing and accuracy estimation.  Authors should address the following criteria for assessing 
numerical uncertainty. 

1. The basic features of the method including formal truncation error of individual terms in 
the governing numerical equations must be described. 

2. Methods must be at least second order accurate in space. 
3. Inherent or explicit artificial viscosity (or diffusivity) must be assessed and minimized. 
4. Grid independence or convergence must be established. 
5. When appropriate, iterative convergence must be addressed. 
6. In transient calculations, phase error must be assessed and minimized. 
7. The accuracy and implementation of boundary and initial conditions must be fully ex-

plained. 
8. An existing code must be fully cited in easily available references. 
9. Benchmark solutions may be used for validation for a specific class of problems. 
10. Reliable experimental results may be used to validate a solution. 
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 Since 1990, the Fluids Engineering Division of ASME has pursued activities concerning 

the detection, estimation and control of numerical uncertainty and/or error in computational fluid 

dynamics (CFD) studies. The first quality-control measures in this area were issued in 1986 

(Roache et al., [1]), and revised in 1993 (Freitas [2]). Given the continued increase in CFD 

related publications, and the many significant advancements in computational techniques and 

computer technology, it has become necessary to revisit the issue and formulate a more detailed 

policy to further improve the quality of publications in this area. This brief note provides specific 

guidelines for prospective authors for calculation and reporting of discretization error estimates 

in CFD simulations where experimental data may or may not be available for comparison. The 

underlying perspective is that CFD-related studies will eventually aim to predict the outcome of a 

physical event for which experimental data is not available. 

 It should be emphasized that the requirements outlined in this note do not preclude those 

already published in the previous two policy statements [1, 2]. It is also important to keep in 

mind that the procedure recommended in this note cannot possibly encompass all possible 

scenarios or applications. 

 

Preliminaries 

 The computer code used for an application must be fully referenced, and previous code 

verification studies must be briefly described or cited. The word "verification" is used in this 

note in its broadest sense, meaning that the computer code is capable of solving a system of 

coupled differential or integral equations with a properly posed set of initial and/or boundary 
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conditions correctly, and reproduces the exact solution to these equations when sufficiently fine 

grid resolution (both in time and space) is employed. The formal order of accuracy in time and 

space for each equation solved should be also stated clearly, with proper references where this 

information is accessible to the readers. Before any discretization error estimation is calculated, it 

must be shown that iterative convergence is achieved with at least three (preferably four) orders 

of magnitude decrease in the normalized residuals for each equation solved. (This commonly-

used criterion does not always ensure adequate convergence; see Appendix A)  For time-

dependent problems, iterative convergence at every time step should be checked, and sample 

convergence trends should be documented for selected, critically important, variables.  A possible 

method for assessment of iteration errors is outlined in Appendix A.  

 It should also be recognized that uncertainty in inlet flow boundary conditions could be a 

significant contributor to the overall uncertainty. Here we recommend that the degree of 

sensitivity of the presented solution to small perturbations in the inlet conditions be studied and 

reported. 

 The recommended method for discretization error estimation is the Richardson 

extrapolation (RE) method. Since its first elegant application by its originator (Richardson [3, 

4]), this method has been studied by many authors. Its intricacies, shortcomings and 

generalization have been widely investigated.  A short list of references given in the bibliography 

[2, 5-14] is selected for the direct relevance of these references to the subject, and for brevity. 

The limitations of the RE method are well known. The local RE values of the predicted variables 

may not exhibit a smooth, monotonic dependence on grid resolution, and in a time-dependent 

calculation, this non-smooth response will also be a function of time and space. Nonetheless, it is 

currently the most reliable method available for the prediction of numerical uncertainty. 

Prospective authors can find many examples in the above references. As new and more reliable 

methods emerge, the present policy statement will be re-assessed and modified as needed.  

The GCI method (which is based on RE) described herein is an acceptable and 

recommended method that has been evaluated over several hundred CFD cases [1, 4, 8, 15, 16]. 

If authors choose to use it, the method per se will not be challenged in the paper review process. 
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If authors choose to use another method, the adequacy of their method will be judged in the 

review process. This policy is not meant to discourage further development of new methods; in 

fact, JFE encourages the development and statistically significant evaluation of alternative 

methods of estimation of error and uncertainty. Rather, this policy is meant to facilitate CFD 

publication by providing practitioners with a method that is straightforward to apply, is fairly 

well justified and accepted, and will avoid possible review bottlenecks, especially when the CFD 

paper is an applications paper rather than one concerned with new CFD methodology. 

Recommended Procedure for estimation of discretization error 

 

Step 1. Define a representative cell, mesh or grid size h. For example, for three-

dimensional calculations  
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where Vi is the volume, and Ai is the area of the i
th

 cell, and N is the total number of cells used 

for the computations. Equations (1) and (2) are to be used when integral quantities, e.g., drag 

coefficient, are considered. For field variables, the local cell size can be used. Clearly, if an 

observed global variable is used, it is then appropriate to use also an average “global” cell size. 

The area should be interpreted strictly according to the mesh being used, i.e. the mesh is either 

2-D (consisting of areas) or 3-D (consisting of volumes) irrespective of the problem being solved. 

Step 2. Select three significantly different sets of grids, and run simulations to determine 

the values of key variables important to the objective of the simulation study, for example, a 
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variable  critical to the conclusions being reported. It is desirable that the grid refinement factor, 

r=hcoarse/hfine, be greater than 1.3. This value of 1.3 is based on experience, and not on formal 

derivation. The grid refinement should, however, be done systematically, that is, the refinement 

itself should be structured even if the grid is unstructured. Use of geometrically similar cells is 

preferable. 

Step 3. Let h1< h2< h3 and r21=h2/h1, r32=h3/h2, and calculate the apparent order, p, of the 

method using the expression 
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where 32= 3- 2 , 21= 2- 1 , k denoting the solution on the k
th

 grid. Note that q(p)=0 for 

r=const. Equation (3) can be solved using fixed-point iteration, with the initial guess equal to the 

first term. The absolute value in Eq. (3a) is necessary to ensure extrapolation towards h=0 [6].   

Negative values of 32/ 21<0 are an indication of oscillatory convergence. If possible, the 

percentage occurrence of oscillatory convergence should also be reported. Agreement of the 

observed apparent order with the formal order of the scheme used can be taken as a good 

indication of the grids being in the asymptotic range; the converse should not necessarily be 

taken as a sign of unsatisfactory calculations. It should be noted that if either 32= 3- 2 or 21= 2-
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1  is “very close” to zero, the above procedure does not work. This might be an indication of 

oscillatory convergence or, in rare situations, it may indicate that the “exact” solution has been 

attained. In such cases, if possible, calculations with additional grid refinement should be 

performed; if not, the results may be reported as such. 

Step 4 Calculate the extrapolated values from 

 )1/()( 212121
21 pp
ext rr . (4) 

Similarly, calculate ext
32

 . 

Step 5 Calculate and report the following error estimates, along with the apparent order p: 

Approximate relative error: 
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Extrapolated relative error: 
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The fine-grid convergence index: 
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 Table 1 illustrates this calculation procedure for three selected grids. The data used is 

taken from Celik & Karatekin [6]), where the turbulent two-dimensional flow over a backward 
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facing step was simulated on non-uniform structured grids with total number of cells N1, N2, and 

N3. Hence, according to Table 1, the numerical uncertainty in the fine-grid solution for the 

reattachment length should be reported as 2.2%; note that this does not account for modeling 

errors. 

Discretization Error Bars 

 When computed profiles of a certain variable are presented, it is recommended that 

numerical uncertainty be indicated by error bars on the profile, analogous to experimental 

uncertainty. It is further recommended that this be done using the GCI in conjunction with an 

average value of p=pave as a measure of the global order of accuracy. This is illustrated in Figs. 1 

and 2. 

 Figure 1 (data taken from Celik & Karatekin [6]) presents an axial velocity profile along 

y-axis at an axial location of x/H=8.0 for a turbulent two-dimensional backward-facing-step 

flow. The three sets of grids had 980, 4500, and 18000 cells, respectively. The local order of 

accuracy p calculated from Eq. (3) ranges from 0.012 to 8.47, with a global average pave of 1.49, 

which is a good indication of the hybrid method applied for that calculation. Oscillatory 

convergence occurs at 20% of the 22 points. This averaged apparent order of accuracy is used to 

assess the GCI indices values in Eq. (7) for individual grids, which is plotted in the form of error 

bars, as shown in Fig. 1(b). The maximum discretization uncertainty is 10%, which corresponds 

to 0.35 m/s. 
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Table 1: Sample calculations of discretization error 

  = dimensionless 

reattachment length 

(with monotonic 

convergence) 

 = axial velocity at 

x/H=8, y=0.0526 

(p < 1) 

 = axial velocity at  

x/H=8, y=0.0526 

(with oscillatory 

convergence) 

N1, N2, N3 18000, 8000, 4500
 

18000, 4500, 980
 

18000, 4500, 980 

r21 1.5 2.0 2.0 

r32 1.333 2.143 2.143 

1 6.063 10.7880 6.0042 

2 5.972 10.7250 5.9624 

3 5.863 10.6050 6.0909 

p 1.53 0.75 1.51 

ext
21 6.1685 10.8801 6.0269 

ea
21 

1.5% 0.6% 0.7% 

eext
21

 1.7% 0.9% 0.4% 

GCIfine
21 

2.2% 1.1% 0.5% 

 

 

 Figure 2 (data taken from Celik & Badeau [17]) presents an axial velocity profile along 

the y-axis at the station x/H=8.0 for a laminar two-dimensional backward-facing-step flow. The 

Reynolds number based on step height is 230. The sets of grids used were 20x20, 40x40, and 

80x80, respectively. The local order of accuracy p ranges from 0.1 to 3.7, with an average value 

of pave = 1.38. In this figure, 80% out of 22 points exhibited oscillatory convergence. 

Discretization error bars are shown in Fig. 2(b), along with the fine-grid solution. The maximum 

% discretization error was about 100%; this high value is relative to a velocity near zero, and 

corresponds to a maximum uncertainty in velocity of about 0.012 m/s. 
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 In the not unusual cases of noisy grid convergence, the least-squares version of GCI 

should be considered [15, 16]. 

 

 

 (a) (b) 

Figure 1(a): Axial velocity profiles for a two-dimensional turbulent backward-facing-step 

flow calculation, Ref: Celik & Karatekin [6];  

(b): Fine-grid solution, with discretization error bars computed using Eq. (7). 
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 (a) (b) 

Figure 2(a): Axial velocity profiles for a two-dimensional laminar backward-facing-step 

flow calculation, Ref: Celik & Badeau [17];  

(b): Fine-grid solution, with discretization error bars computed using Eq. (7). 
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APPENDIX A :  A Possible Method for Estimating Iteration Error 

 Following Ferziger [1, 2], the iteration error can be estimated by 

   

1

,
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            (A.1) 

where n is the iteration number, and 1  is the principal eigenvalue of the solution matrix of the 

linear system, which can be approximated from  
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The uncertainty iter  in iteration convergence can then be estimated as 

   
,

1

n

iter i

iter

ave

        (A.3)  

 is any appropriate norm, e.g., L  norm.  Here, ave  is the average value of i  over a 

reasonable number of iterations; if 1.0ave , the difference between two consecutive iterations 

would not be a good indicator of iteration error. In order to build conservatism into these 

estimates, it is recommended that a limiter of  < 2 be applied in calculating ave . 

 It is recommended that iteration convergence error calculated as suggested above (or in 

some other rational way) should be at least one order of magnitude smaller than the discretization 

error estimates for each calculation. For alternative methods see for example Eca and Hoekstra 

[3] or Stern et al.[4]. 
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